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The current debates about the future of mathematics education often lead to confusion about
the role that research should play in settling disputes. On the one hand, researchers are called
upon to resolve issues that really are about values and priorities, and, on the other hand,
research is ignored when empirical evidence is essential. When research is appropriately
solicited, expectations often overestimate, or underestimate, what research can provide. In
this article, by distinguishing between values and research problems and by calibrating appro-
priate expectations for research, I address the role that research can and should play in shap-
ing standards. Research contributions to the current debates are illustrated with brief sum-
maries of some findings that are relevant to the standards set by the NCTM.
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What is the relationship between what is known from research in mathematics
education and what is expressed in the NCTM Standards?1 Can we say, for
example, that research supports the Standards? These questions have become
increasingly important as debates about reform reach fever pitch. They are fair
questions, even though they do not have simple answers. The answers are not
simple because (a) standards, in any field, are rarely based solely on research, so
the connection between research and standards is never straightforward; and (b)
research in mathematics education does not shine equally brightly on all aspects
of the NCTM Standards, so we cannot provide blanket statements. 
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My goal in this article is to clarify what we can expect from research and then
to review, briefly, what we can say, from research, about the Standards. The con-
clusion will be that, where relevant research exists, the Standards are consistent
with the evidence. Said another way, the Standards do not violate the relevant
findings from research on teaching and learning mathematics. But knowing the
short answer is not enough. In matters as complex as connecting educational
standards with research, it is as important to understand the process through
which such a conclusion can be reached as the conclusion itself. 

WHAT SHOULD WE EXPECT FROM RESEARCH?

How nice it would be if one could look at the research evidence and decide
whether the Standards are right or wrong. This would make decisions simple and
bring an end to the debates about the direction of mathematics education in the
United States. Is this impossible? After all, can’t those in other professions make
such clear connections? Actually, they can’t. Standards and research rarely have
a clear relationship. To understand the reason, we need to consider some of the
limitations of research. 

Some Things We Should Not Expect From Research

Standards are not determined by research. Standards in mathematics educa-
tion, like those in other fields, are statements about priorities and goals. In educa-
tion, they are value judgments about what our students should know and be able
to do. They are chosen through a complex process that is fed by societal expecta-
tions, past practice, research information, and visions of the professionals in the
field. The process is similar to the one that operates in selecting standards in other
professional fields. Research can influence the nature of the standards that are
adopted, but, in the end, research is not the sole basis for selection of the stan-
dards. Standards, ultimately, are statements about what is most valued.2

Our society is now in the midst of a crucial debate about goals and values. It
is important that the debate continue until a consensus is reached about our goals
for students. Research can inform the debate, but the reverse is equally true—the
selection of standards signals what research is most relevant. If the paper-and-
pencil computation of square roots is omitted from the standards, for example,
then research that shows one method of teaching written computation of square
roots is more effective than another probably will be ignored. If ability to invent
procedures to solve new problems is emphasized in the standards, then the
research on students’ creative problem solving is of great interest.

One of the current dilemmas revolves around written computation skills. The
debate has not yet developed a clear consensus about their importance. This lack
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of consensus is understandable given the rapid changes in mathematical compe-
tencies that are important in the workplace and the increasing availability of
computational technologies. But the current uncertainty has implications for
interpreting research. For those who believe that high efficiency with written
computation still is essential, the research showing Teaching Method A produces
greater efficiency than Method B is significant; for those who believe that mod-
erate efficiency with written computation is sufficient, such research is, at most,
of moderate interest. Debates about what the research says will not settle the
issue; only debates about values and priorities will be decisive. Until the value
issue is settled, it will be difficult to find common ground for examining the
research. 

What is “best” cannot be proven by research. There is increasing pressure to
prove, scientifically, what are the best curricular and pedagogical decisions in
mathematics. Should we teach in this way or that way? Should we use this text-
book series or that textbook series? Scientific research is looked to for the solu-
tion because, after all, science has taken us to Mars with the Pathfinder and has
healed painful backs with incredibly precise arthroscopic surgeries.

Looking to scientific research is a good thing; the more reliable information
we have, the better will be our decisions. But, in every field, science has its lim-
its. Consider the requirements for a healthy lifestyle. Standards are proposed by
health professionals for living a healthy life—diet, exercise, and so on. But
medical research does not prove that these standards are the best ones. Is meat
good for you or not? Is it better to use butter or margarine? Should we have
exactly seven servings of fruits and vegetables every day, or would six be
enough? These simple sounding questions do not have simple answers. There
are too many factors that influence the outcomes: how much exercise we get,
how much we weigh, our genetic make-ups and past histories, our metabolic
rates, and so on. It would be impossible to control all these factors to prove that
a certain diet is best. 

We have a similar situation in education. Most outcomes are influenced by
more factors than we can identify, let alone control. Does this mean that
research is a waste of time? Not at all. Just because researchers cannot prove
whether a particular decision is the best one does not mean that research is irrel-
evant. In complex environments, such as our bodies and school classrooms,
there is a special relationship between research and decision-making. Decisions
often are based on probability estimates, and research data help us estimate the
likelihood of success. The clearer the results, the more confident we are that we
are making good decisions. We make decisions with levels of confidence, not
with certainty.

Here is a simple example. Is it better for students to use calculators or not to
use calculators in elementary school? This is a simple enough question and one
that is receiving heated debate. Shouldn’t we be able to prove whether children
should use calculators, one way or another? Suppose we try. First, we need to
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decide what we mean by better and how to measure this construct. Does better
mean that students, at the end, understand mathematics more deeply, solve chal-
lenging problems more effectively, execute written computation procedures
more quickly, like mathematics more? Deciding what better means is not a triv-
ial task. It requires being clear about values and priorities. Suppose, for the sake
of argument, that we mean “execute written computation procedures more accu-
rately and quickly.” Many people would guess that, if this is the valued outcome,
the no-calculator classroom would be the best. 

How could we test this hypothesis? How would we set up a fair comparison
between the calculator and the no-calculator treatments? A reasonable approach
would be to develop, with our desired learning goal in mind, the best instruc-
tional program we could think of with the calculator and the best program with-
out the calculator. Using this approach would mean that students in the two pro-
grams probably would be completing different tasks and engaging in different
activities, because different activities are possible with and without the calcula-
tor. But now we have a problem because we will not know what caused the dif-
ferences in students’ learning. Was it the calculator, the other differences
between the instructional programs, or the interactions? Maybe we could solve
this problem by keeping the instructional programs identical; just plop the cal-
culators into one set of classrooms and not the others. But into which instruc-
tional program should the calculators be plopped—the one designed to maximize
the benefits of the calculator or the one designed to function without calculators?
Neither choice is good, because the omitted program would not get a fair test.
Maybe we should split the differences. But then we have an instructional pro-
gram that no one would intentionally design.

Does this research design problem mean that all the studies on using calcu-
lators, and there have been many, are uninterpretable? No. But it does mean
that no single study will prove, once and for all, whether we should use cal-
culators. The best way to draw conclusions regarding issues like this is to
review the many studies that have been done under a variety of conditions and
look for patterns in the results. Perhaps studies in the early grades show one
kind of pattern and studies in the later grades another pattern. Or, perhaps
studies using the calculators in one way show one pattern of results and stud-
ies using the calculators in another way show another pattern. As it happens,
this kind of review of calculator use has been done and a partial and tentative
answer is available (Hembree & Dessart, 1986). The results indicate that
using calculators, along with common pencil-and-paper activities, does not
harm students’ skill development and supports increased problem-solving
skills and better attitudes toward mathematics. This finding does not mean, by
the way, that this is what will be found in every classroom, but it does indi-
cate two things: (a) A decision to use calculators wisely during mathematics
instruction can be made with some confidence; and (b) when calculators are
blamed for damaging students’ mathematical competence, it would be useful
to check the full instructional program—the problem is likely to be a poor use
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of calculators, or a feature of instruction unrelated to calculators, and not the
calculators themselves.3

If researchers cannot prove that one course of action is the best one, it follows
that researchers cannot prescribe a curriculum and a pedagogical approach for all
students and for all time. Decisions about curriculum and pedagogy are always
tentative, made with some level of confidence, a level that changes over time
with new information and changing conditions. Research can, and should, play a
critical role in helping educators make informed decisions and set the levels of
confidence, but we cannot look to research for clear prescriptions.

Research cannot imagine new ideas. Improving the learning opportunities for
students depends, in part, on coming up with new ideas—new ways of teaching,
new curriculum materials, new ways of organizing schools. Generating new
ideas depends on the creative acts of the human mind. Research, by itself, is no
substitute. Of course, the research process can place people in position to see
things in a new way and imagine new possibilities, but it is the individual’s inter-
pretation, not the research evidence alone, that generates the new ideas.

Suppose we wanted to develop a better method for teaching fractions. We could
begin by reviewing the research evidence from previous experiments on teaching
fractions. We might be able to tell which methods have worked best, but to imag-
ine an even more effective approach we would need to use other things we know
about students’ learning, about classroom processes, about mathematics, and so
on. New ideas might be triggered by reading previous research and conducting
studies ourselves, but forming the new ideas requires human creativity.

It is important to remember that the research data tell us something only about
the teaching methods or curriculum materials that have been tested. Often, class-
room experiments compare a new method with a traditional or “control” method.
When the results favor the new method, investigators are tempted to claim that
the new method should be adopted. But the power of the results is only as great
as the control method against which the new method was compared. It may be
true that, of the two, the new method is more effective, but there may be a third
method that is even more effective. 

A good example of this situation can be found in past descriptions of how expert
teachers differ from novices (Good, Grouws, & Beckerman, 1978; Leinhardt,
1986). Experts were found to teach quickly paced lessons, cover more problems,
and ask more recall than explanation questions. Does this result mean that we
should train all teachers to teach in this way? If the two alternatives included in these
studies were the only options, maybe so. But, suppose the goals change from a focus
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on efficient execution of written computation procedures to a balance between a
broader set of skills and conceptual understanding, and suppose that there are other
approaches, developed more recently, that help students achieve these goals even
better? Then we need to consider seriously these alternative approaches.

Some Things We Can Expect From Research

Before summarizing what can be learned from research about the effects of dif-
ferent instructional approaches, we must continue calibrating our expectations.
After all, research is not filled just with limitations; it holds enormous potential.

Research can influence the nature of standards. Although research cannot be the
basis for making the final decision about standards, mathematics education is filled
with examples of ways that research can influence the nature of standards. In the
early 1900s, mathematics was viewed as a valuable subject because learning math-
ematics was believed to exercise the mind, and the mind, like a muscle, needed exer-
cise to become strong. E. L. Thorndike (1922; Thorndike & Woodworth, 1901)
warned educators that the idea of mind as muscle was a poor analogy. Students’
minds did not appear to become stronger from studying mathematics (they did not
become smarter in other areas); they simply learned mathematics. Standards today
rarely prescribe mathematical activity in order to exercise the mind. Thorndike’s
research encouraged a move away from these kinds of standards.

Research on learning also can have the opposite effect—it can document new
possibilities and draw attention toward new standards. Research on young chil-
dren’s ability to solve simple arithmetic story problems before instruction pro-
vides one example (Carpenter, Moser, & Romberg, 1982). Standards increasing-
ly emphasize young students’ inventions of arithmetic procedures because, in
part, we know they are capable of such inventions.

Research in the subject itself also can shape the kinds of standards that are
selected. For example, research and development within mathematics has opened
up vast new areas of study, such as coding theory and combinatorics. Related
topics in discrete mathematics are now found in the elementary and secondary
curricula and are identified in the NCTM Standards.

Research influences the nature of standards only when the implications of
research are valued. Mathematical inventions by students are not included in the
Standards simply because students are capable of inventing; they are included
because an additional value judgment has been made—that invention is an
important mathematical process. Topics in discrete mathematics are included not
just because they are there but because a judgment has been made about their
importance in the field of mathematics.

Research can document the current situation. Research can provide informa-
tion about how we are doing at the moment—how we are teaching, what cur-
riculum materials we are using, and how students are learning. Although this is
an obvious role for research, it often is underutilized. Take the case of California
(Stigler, 1998). In 1995, faced with falling mathematics achievement scores, the
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state superintendent of public instruction appointed a task force to study the sit-
uation and propose solutions. Why, if California’s curriculum frameworks had
received so much acclaim, were students’ achievement scores so low?
Discussion at the task force meetings soon turned to the frameworks. Were they
to blame? Some members thought so; some members defended them.

Lost in those early debates in California was the fact that no information was
available on the extent to which the frameworks were influencing mathematics
instruction in the state’s classrooms. Without knowing what was happening in
classrooms, how could the effectiveness of the frameworks be assessed? This story
is not meant to single out California; few, if any, states regularly collect informa-
tion on what is happening inside classrooms. The absence of data collection is
unfortunate because without information about the current situation, we make
unwitting mistakes and produce the pendulum swings often evident in education.

Research can document the effectiveness of new ideas. In addition to using
research to apply the brakes, research also can be used to step on the accelerator.
Research can document what students can learn under what kinds of conditions.
Research can show that students can reach certain goals and that some kinds of
instruction are especially effective in helping them get there. For example, given
appropriate instruction, students at particular ages can learn more about proba-
bility (Jones, Thornton, Langrall, Johnson, & Tarr, 1997) or engage in more
deductive reasoning (Fawcett, 1938; King, 1973; Yerushalmy, Chazan, &
Gordon, 1987) than they do now. Research of this kind can help to verify that
improvements in particular areas are feasible, that specific visions of the profes-
sionals in the field are reasonable. 

By the same token, research also can show that new ideas are untenable. Visions
of what is possible for students might be endorsed enthusiastically by experts but
prove to be misinformed and unrealistic. What is crucial is that carefully collected
empirical data be used to distinguish between the new ideas that can be imple-
mented effectively and those that can’t. Without such information, we can engage
in debates, like those of the California task force, that have no resolution.

An increasingly common debate is illustrated by this excerpt from the April
26, 1998, edition of the Riverside Press-Enterprise newspaper: 

High failure rates and concerns that students are not learning the math skills they
need has prompted a third of Inland area high schools trying a new college-prep pro-
gram to drop it. Riverside’s Poly High School discontinued College Preparatory
Mathematics [CPM] in June after only 27 percent of the Algebra I students earned a
C or better. One semester after scrapping the program, the passing rate went up to 42
percent. (Sharma, 1998)

As the story continues, it becomes clear that there is no consensus among the
local stakeholders about whether or not CPM is a failure nor about why it is hav-
ing the reported effect. Many opinions are expressed, such as that NCTM-
inspired programs like this are doomed to fail, but there are no clear conclusions.
Of course, there can be no clear conclusions because no information was col-
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lected systematically about what was going on in classrooms. We do not know
how the program was being implemented, so there is no way to evaluate its effec-
tiveness.4 Unfortunately, many of the claims and counter-claims about the
effects of new programs are based on these kinds of stories, without the benefit
of real information.

Research can suggest explanations for successes and failures. Researchers can
probe beneath the surface and collect information to help us understand the situ-
ation and prevent us from making mistakes and engaging in fruitless debates.
Consider a recent report by investigators of the QUASAR project, a large-scale
effort to improve the mathematics education programs of inner-city middle
schools. In some QUASAR schools, students’ achievement was not rising as
expected. It would have been easy to conclude that the reform programs were not
effective for some students. But the investigators took a second look, comparing
schools in which students’ achievement was increasing with schools in which it
was not (Parke & Smith, 1998). What they found were major differences in the
staffing situations in the two kinds of schools. In the less successful schools, the
rate of teacher and principal turnover was very high. This turnover resulted in a
relatively weak implementation plan and fewer and more superficial changes in
classroom instruction. So, it would be a mistake to conclude that the school’s
program itself was ineffective; instead, one can conclude only that a weak imple-
mentation was ineffective and that this can occur when staff do not have the time
to learn new practices.

WHAT CAN WE LEARN FROM RESEARCH?

The guidelines for what we can expect from research help to interpret the
research findings that are relevant for the NCTM Standards. The following obser-
vations summarize briefly what we know from applying our research machin-
ery—taking advantage of what it can do and accounting for its limitations.5
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The Current State of Mathematics Teaching and Learning

What is the current state of classroom teaching? It may surprise some people
to learn that we have a quite consistent, predictable way of teaching mathemat-
ics in the United States and that we have used the same basic methods for near-
ly a century (Fey, 1979; Hoetker & Ahlbrand, 1969; Stake & Easley, 1978;
Stigler & Hiebert, 1997; Stodolsky, 1988; Weiss, 1978). Here is an often cited
account from a researcher’s observations of mathematics lessons: 

First, answers were given for the previous day’s assignment. A brief explanation,
sometimes none at all, was given of the new material, and problems were assigned
for the next day. The remainder of the class was devoted to students working inde-
pendently on the homework while the teacher moved about the room answering
questions. The most noticeable thing about math classes was the repetition of this
routine. (Welch, 1978, p. 6)

Readers may recognize their own school mathematics experience in this descrip-
tion; many people do. 

The same method of teaching persists, even in the face of pressures to change.
After a decade of mathematics reform in the 1960s, the Conference Board of the
Mathematical Sciences (1975) found that “Teachers are essentially teaching the
same way they were taught in school” (p. 77). And, in the midst of current
reforms, the average classroom shows little change (Dixon et al., 1998; Stigler &
Hiebert, 1997).

Most characteristic of traditional mathematics teaching is the emphasis on teach-
ing procedures, especially computation procedures. Little attention is given to
helping students develop conceptual ideas, or even to connecting the procedures
they are learning with the concepts that show why they work. In the lessons includ-
ed in the video study of the Third International Mathematics and Science Study
(TIMSS), for 78% of the topics covered during the eighth-grade U.S. lessons, pro-
cedures and ideas were only demonstrated or stated, not explained or developed.
And 96% of the time that students were doing seatwork they were practicing pro-
cedures they had been shown how to do (Stigler & Hiebert, 1997).

Coupled with this information on teaching practices, the TIMSS data also
show that the traditional U.S. curriculum is relatively repetitive, unfocused, and
undemanding (Schmidt, McKnight, & Raizen, 1996; Silver, 1998). Compared
with the curricula in other countries, the U.S. curriculum provides few opportu-
nities for students to solve challenging problems and to engage in mathematical
reasoning, communicating, conjecturing, justifying, and proving. Much of the
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curriculum deals with calculating and defining, and much of this activity is car-
ried out in a rather simplistic way. 

What are students learning from traditional instruction? On the basis of the
most recent National Assessment of Educational Progress (NAEP)6, we know
that almost all students learn to add, subtract, multiply, and divide whole num-
bers, and the majority learn to do very simple arithmetic with fractions, decimals,
and percents. For example, in eighth grade, 91% of students added three-digit
numbers with regrouping, 80% completed a long-division problem, 83% round-
ed a decimal number to the nearest whole number, and 58% found the percent-
age of a number (Kouba & Wearne, in press; Wearne & Kouba, in press). 

We also know, however, that students’ knowledge and skills are very fragile
and apparently are learned without much depth or conceptual understanding.
This problem becomes evident when we study performance on related items that
require students to extend these skills, reason about them, or explain why they
work. For example, only 35% of eighth graders identified how many pieces were
left if 65 pieces of candy were divided equally among 15 bags with each bag hav-
ing as many as possible (Kouba & Wearne, in press). Multistep problems pose
an even greater challenge. For example, 8% of eighth graders solved a multistep
problem on planning a trip that required adding miles, finding distance from
miles per gallon, and calculating a fractional part of the trip (Wearne & Kouba,
in press).

Conclusions. The data confirm one of the most reliable findings from research
on teaching and learning: Students learn what they have an opportunity to learn.
In most classrooms, students have more opportunities to learn simple calculation
procedures, terms, and definitions than to learn more complex procedures and
why they work or to engage in mathematical processes other than calculation and
memorization. Achievement data indicate that is what they are learning: simple
calculation procedures, terms, and definitions. They are not learning what they
have few opportunities to learn—how to adjust procedures to solve new prob-
lems or how to engage in other mathematical processes. 

These achievement data indicate that the traditional teaching approaches are
deficient and can be improved. It is curious that the current debate about the
future of mathematics education in this country often is treated as a comparison
between the traditional “proven” approaches and the new “experimental”
approaches (Schoenfeld, 1994). Arguments against change sometimes claim that
it is poor policy, and even unethical, to implement unproven new programs. Lee
Hochberg, a reporter for Oregon Public Broadcasting, recently had this to say
during a story on reform-minded mathematics teaching for the PBS NewsHour
with Jim Lehrer: “Although there never was any scientific research conducted on
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the effectiveness of this style of teaching, the NCTM hoped that it would better
prepare American students for the modern adult workplace” (May 11, 1998).
Expressing a similar sentiment, a parent in Bloomfield Hills, Michigan, removed
her son from a reform mathematics program because “I like going with what I
know is proven. I just don’t want to take the chance” (Bondi, 1998).

The commendable part of these arguments is that they claim to promote
research-based decision making. That part certainly is appropriate and, in fact, is
the reason for this article. But, presuming that traditional approaches have
proven to be successful is ignoring the largest database we have. The evidence
indicates that the traditional curriculum and instructional methods in the United
States are not serving our students well. The long-running experiment we have
been conducting with traditional methods shows serious deficiencies, and we
should attend carefully to the research findings that are accumulating regarding
alternative programs.

How Effective Are the New Programs?

What are the new teaching methods? Summarizing the alternative methods of
teaching mathematics that are being developed around the country is nearly
impossible because there are so many programs. Even if we examine only those
that have been inspired by the Standards and those that are trying to translate the
recommendations into practice, it is difficult to lump them into one description.
It is possible, however, to focus on one area of the curriculum in which consid-
erable work has been done in designing and testing alternative instructional pro-
grams—primary-grade arithmetic (Carpenter, Fennema, Peterson, Chiang, &
Loef, 1989; Cobb et al., 1991; Fennema et al., 1996; Fuson & Briars, 1990;
Hiebert & Wearne, 1992, 1993, 1996; Hiebert et al., 1997; Kamii, 1985, 1989;
Villaseñor & Kepner, 1993; Wood & Sellers, 1996). Because many of the inves-
tigators are engaged in independent research programs, there are differences in
the alternative instructional programs that are implemented in classrooms. But,
there also is a convergence toward some significant similarities, and it is this
convergence that is of particular interest. 

The features that characterize many of the alternative programs in primary-
grade arithmetic include the following:

• Build directly on students’ entry knowledge and skills. Many students enter
school being able to count and solve simple arithmetic problems. Alternative
programs take advantage of this ability by gradually increasing the range of
problem types and the sizes of the numbers.

• Provide opportunities for both invention and practice. Classroom activity
often revolves around solving problems that require some creative work by
the students and some practice of already learned skills. For example, second
graders may have been subtracting numbers like 345 – 127 and then are asked
to work out their own methods for subtracting 403 – 265 (a problem with a 0
in the subtrahend).
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• Focus on the analysis of (multiple) methods. Classroom discussion usually
centers on the methods for solving problems, methods that have been present-
ed by the students or the teacher. Methods are compared for similarities and
differences, advantages and disadvantages.

• Ask students to provide explanations. Students are expected to present solutions
to problems, to describe the methods they use, and to explain why they work. 

There are research reports of alternative instructional programs in other areas
that share these features. These include, for example, the comprehensive prob-
lem-solving program for middle school students commonly referred to as the
“Jasper Project” (Cognition and Technology Group at Vanderbilt [CTGV],
1997) as well as smaller scale research programs on students’ learning of com-
mon fractions (Behr, Wachsmuth, Post, & Lesh, 1984; Mack, 1990), decimal
fractions (Wearne & Hiebert, 1988, 1989), percents (Moss & Case, in press), and
calculus (Heid, 1988; Palmiter, 1991). 

What are students learning from alternative programs? Because the goals of
the alternative programs are somewhat different from those of traditional pro-
grams, comparing students’ achievement in the two kinds of programs must be
done carefully. The following conclusions pertain mostly to elementary school
students’ learning of arithmetic, for which the teaching methods in the alterna-
tive programs show considerable similarity.

• Instructional programs that emphasize conceptual development, with the goal
of developing students’ understanding, can facilitate significant mathematics
learning without sacrificing skill proficiency.

It should come as no surprise that instruction can be designed to promote deep-
er conceptual understanding. If students have more opportunity to construct
mathematical understandings, they will construct them more often and more
deeply. The question is, at what cost? Will they fail to master other knowledge
or skills that we value? The results show that well-designed and implemented
instructional programs can facilitate both conceptual understanding and proce-
dural skill (Carpenter et al., 1989; Cobb et al., 1991; CTGV, 1997; Hiebert &
Wearne, 1993, 1996; Hiebert et al., 1997; Kamii, 1985, 1989; Knapp, Shields, &
Turnbull, 1992; Mack, 1990; Moss & Case, in press; Wearne & Hiebert, 1988;
Wood & Sellers, 1996). 

• Students learn new concepts and skills while they are solving problems.

The traditional approach to solving problems in U.S. classrooms is to teach a
procedure and then assign students problems on which they are to practice the
procedure. Problems are viewed as applications of already learned procedures.
The alternative instructional programs take a different view. The theory on which
these programs are based says that students can acquire skills while they devel-
op them to solve problems. In fact, the development of the skill, itself, can be
treated as a problem for students to solve. Evidence for students’ conceptual and
procedural learning in these programs is presented in the reports cited above; a
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summary of these findings is presented in Hiebert et al., 1996.

• If students over-practice procedures before they understand them, they have
more difficulty making sense of them later.

A long-running debate has been whether students should practice procedures
first and then try to understand them or should understand the procedures before
practicing them. The best evidence suggests that if students have memorized pro-
cedures and practiced them a lot, it is difficult for them to go back and under-
stand them later (Brownell & Chazal, 1935; Mack, 1990; Resnick & Omanson,
1987; Wearne & Hiebert, 1988). 

Explaining the Lack of Implementation

If it is true that instructional programs can be designed to facilitate more ambi-
tious learning goals for students, why don’t we see them more often? Why do we
read stories of failed programs, like the story carried in the Riverside Press-
Enterprise (Sharma, 1998)? One possibility is that the alternative programs,
which show great promise in research settings, are not implemented effectively
when adopted by schools and districts. One reason for this situation is simple but
under-appreciated: It is difficult to change the way we teach. The new, more
ambitious instructional programs require teachers to make substantial changes.
This change doesn’t happen automatically; it requires learning. And learning for
teachers, just as for students, requires an opportunity to learn. But most teachers
have relatively few opportunities to learn new methods of teaching (Cohen &
Hill, 1998; Lord, 1994; O’Day & Smith, 1993; Weiss, 1994). 

Research on teacher learning shows that fruitful opportunities to learn new
teaching methods share several core features: (a) ongoing (measured in years)
collaboration of teachers for purposes of planning with (b) the explicit goal of
improving students’ achievement of clear learning goals, (c) anchored by atten-
tion to students’ thinking, the curriculum, and pedagogy, with (d) access to alter-
native ideas and methods and opportunities to observe these in action and to
reflect on the reasons for their effectiveness (CTGV, 1997; Cohen & Hill, 1998;
Elmore, Peterson, & McCarthey, 1996; Fennema et al., 1996; Franke, Carpenter,
Fennema, Ansell, & Behrend, in press; Little, 1982, 1993; Schifter & Fosnot,
1993; Stein, Silver, & Smith, in press; Stigler & Hiebert, 1997; Swafford, Jones,
& Thornton, 1997). Because most classroom teachers in the United States do not
yet have learning opportunities of this kind, it is not surprising that promising
alternative methods are not widely implemented.

CONCLUSIONS

The Standards proposed by NCTM are, in many ways, more ambitious than
those of traditional programs. On the basis of beliefs about what students should
know and be able to do, the Standards include conceptual understanding and the
use of key mathematical processes as well as skill proficiency. The best evidence
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we have indicates that most traditional programs do not provide students with
many opportunities to achieve these additional goals and, not surprisingly, most
students do not achieve them. Alternative programs can be designed to provide
these opportunities, and, when the programs have been implemented with fideli-
ty for reasonable lengths of time, students have learned more and learned more
deeply than in traditional programs. Although the primary evidence comes from
elementary school, especially the primary grades, there is no inconsistent evi-
dence. That is, there are no programs at any level that share the core instruction-
al features, have been implemented as intended for reasonable lengths of time,
and show that students perform more poorly than their traditionally taught peers.

But this is not the end of the story. Alternative programs, consistent with the
NCTM Standards, often require considerable learning by the teacher. Without
new opportunities to learn, teachers must either stick with their traditional
approaches or add on a feature or two of the new programs (e.g., small-group
activity) while retaining their same goals and lesson designs. On the basis of the
available evidence, it is reasonable to presume that it is these practices that often
are critiqued as not producing higher achievement.

What we have learned from research now brings us back to an issue of values.
We now know that we can design curriculum and pedagogy to help students
meet the ambitious learning goals outlined by the NCTM Standards. The ques-
tion is whether we value these goals enough to invest in opportunities for teach-
ers to learn to teach in the ways they require. 

REFERENCES

Behr, M. J., Wachsmuth, I., Post, T. R., & Lesh, R. (1984). Order and equivalence of rational num-
bers: A clinical teaching experiment. Journal for Research in Mathematics Education, 15,
323–341.

Bondi, N. (1998, May 26). Parents wary of new program for teaching math. Detroit News.
Brownell, W. A., & Chazal, C. B. (1935). The effects of premature drill in third-grade arithmetic.

Journal of Educational Research, 29, 17–28.
Carpenter, T. P., Fennema, E., Peterson, P. L., Chiang, C.-P., & Loef, M. (1989). Using knowledge

of children’s mathematical thinking in classroom teaching: An experimental study. American
Educational Research Journal, 26, 499–531.

Carpenter, T. P., Moser, J. M., & Romberg, T. A. (Eds.). (1982). Addition and subtraction: A cogni-
tive perspective. Hillsdale, NJ: Erlbaum.

Cobb, P., Wood, T., Yackel, E., Nicholls, J., Wheatley, G., Trigatti, B., & Perlwitz, M. (1991).
Assessment of a problem-centered second-grade mathematics project. Journal for Research in
Mathematics Education, 22, 3–29.

Cognition and Technology Group at Vanderbilt. (1997). The Jasper project: Lessons in curriculum,
instruction, assessment, and professional development. Mahwah, NJ: Erlbaum.

Cohen, D. K., & Hill, H. C. (1998). Instructional policy and classroom performance: The mathe-
matics reform in California. Ann Arbor, MI: University of Michigan.

Conference Board of the Mathematical Sciences. (1975). Overview and analysis of school mathe-
matics, grades K–12. Washington, DC: Author.

Dixon, R. C., Carnine, D. W., Lee, D.-S., Wallin, J., The National Center to Improve the Tools of
Educators, & Chard, D. (1998). Review of high quality experimental mathematics research:
Report to the California State Board of Education. Eugene, OR: National Center to Improve the
Tools of Educators.

16 Research and Standards



Elmore, R. F., Peterson, P. L., & McCarthey, S. J. (1996). Restructuring in the classroom: Teaching,
learning, and school organization. San Francisco: Jossey-Bass.

Fawcett, H. P. (1938). The nature of proof; a description and evaluation of certain procedures used
in a senior high school to develop an understanding of the nature of proof. 1938 Yearbook of the
National Council of Teachers of Mathematics. New York: Columbia University, Teachers
College.

Fennema, E., Carpenter, T. P., Franke, M. L., Levi, L., Jacobs, V. R., & Empson, S. B. (1996). A lon-
gitudinal study of learning to use children’s thinking in mathematics instruction. Journal for
Research in Mathematics Education, 27, 403–434.

Fey, J. (1979). Mathematics teaching today: Perspectives from three national surveys. Mathematics
Teacher, 72, 490–504.

Franke, M. L., Carpenter, T. P., Fennema, E., Ansell, E., & Behrend, J. (in press). Understanding
teachers’ self-sustaining, generative change in the context of professional development.
International Journal of Teaching and Teacher Education.

Fuson, K. C., & Briars, D. J. (1990). Using a base-ten blocks learning/teaching approach for first-
and second-grade place-value and multidigit addition and subtraction. Journal for Research in
Mathematics Education, 21, 180–206.

Gelernter, D. (1998). Put down that calculator, stupid! New York Post [On-line]. Available Internet:
http://www.nypostonline.com/commentary/2735.htm

Good, T. L., Grouws, D. A., & Beckerman, T. (1978). Curriculum pacing: Some empirical data in
mathematics. Journal of Curriculum Studies, 10, 75–81.

Hanna, G. (1998). Evaluating research papers in mathematics education. In A. Sierpinska & J.
Kilpatrick (Eds.), Mathematics education as a research domain: A search for identity: An ICMI
study (Book 2, pp. 399–407). Dordrecht, The Netherlands: Kluwer.

Heid, M. K. (1988). Resequencing skills and concepts in applied calculus using the computer as a
tool. Journal for Research in Mathematics Education, 19, 3–25.

Hembree, R., & Dessart, D. J. (1986). Effects of hand-held calculators in precollege mathematics
education: A meta-analysis. Journal for Research in Mathematics Education, 17, 83–99.

Hiebert, J., & Wearne, D. (1992). Links between teaching and learning place value with understand-
ing in first grade. Journal for Research in Mathematics Education, 23, 98–122.

Hiebert, J., & Wearne, D. (1993). Instructional tasks, classroom discourse, and students’ learning in
second-grade arithmetic. American Educational Research Journal, 30, 393–425.

Hiebert, J., & Wearne, D. (1996). Instruction, understanding, and skill in multidigit addition and sub-
traction. Cognition and Instruction, 14, 251–283.

Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K., Human, P., Murray, H., Olivier, A., & Wearne,
D. (1996). Problem solving as a basis for reform in curriculum and instruction: The case of math-
ematics. Educational Researcher, 25 (4), 12–21.

Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K., Wearne, D., Murray, H., Olivier, A., & Human,
P. (1997). Making sense: Teaching and learning mathematics with understanding. Portsmouth,
NH: Heinemann.

Hoetker, J., & Ahlbrand, W. (1969). The persistence of the recitation. American Educational
Research Journal, 6, 145–167.

Jones, G. A., Thornton, C. A., Langrall, C. W., Johnson, T. M., & Tarr, J. E. (1997, April). Assessing
and using students’ probabilistic thinking to inform instruction. Paper presented at the Research
Presession to the annual meeting of the National Council of Teachers of Mathematics,
Minneapolis, MN.

Kamii, C. (with Joseph, L. L.). (1989). Young children continue to reinvent arithmetic—2nd grade:
Implications of Piaget’s theory. New York: Teachers College Press.

Kamii, C. K. (with DeClark, G.). (1985). Young children reinvent arithmetic: Implications of
Piaget’s theory. New York: Teachers College Press.

Kilpatrick, J. (1993). Beyond face value: Assessing research in mathematics education. In G. Nissen
& M. Blomhøj (Eds.), Criteria for scientific quality and relevance in the didactics of mathemat-
ics (pp. 15–34). Roskilde, Denmark: Danish Research Council for the Humanities.

17James Hiebert



King, I. L. (1973). A formative development of an elementary school unit on proof. Journal for
Research in Mathematics Education, 4, 57–63.

Knapp, M. S., Shields, P. M., & Turnbull, B. J. (1992). Academic challenge for the children of pover-
ty. Washington, DC: U.S. Department of Education, Office of Policy and Planning.

Kouba, V. L., & Wearne, D. (in press). Number sense, properties, and operations. In E. A. Silver &
P. A. Kenney (Eds.), Results from the seventh mathematics assessment of the National Assessment
of Educational Progress. Reston, VA: National Council of Teachers of Mathematics.

Leinhardt, G. (1986). Expertise in math teaching. Educational Leadership, 43 (7), 28–33.
Lester, F. K., Jr., & Lambdin, D. V. (1998). The ship of Theseus and other metaphors for thinking

about what we value in mathematics education research. In A. Sierpinska & J. Kilpatrick (Eds.),
Mathematics education as a research domain: A search for identity: An ICMI study (Book 2, pp.
415–425). Dordrecht, The Netherlands: Kluwer.

Little, J. W. (1982). Norms of collegiality and experimentation: Workplace conditions of school suc-
cess. American Educational Research Journal, 19, 325–340.

Little, J. W. (1993). Teachers’ professional development in a climate of educational reform.
Educational Evaluation and Policy Analysis, 15, 129–151.

Lord, B. (1994). Teachers’ professional development: Critical colleagueship and the role of profes-
sional communities. In N. Cobb (Ed.), The future of education: Perspectives on national standards
in America (pp. 175–204). New York: College Entrance Examination Board.

Mack, N. K. (1990). Learning fractions with understanding: Building on informal knowledge.
Journal for Research in Mathematics Education, 21, 16–32.

Moss, J., & Case, R. (in press). Developing children’s understanding of rational numbers: A new
model and an experimental curriculum. Journal for Research in Mathematics Education.

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for
school mathematics. Reston, VA: Author.

National Council of Teachers of Mathematics. (1991). Professional standards for teaching mathe-
matics. Reston, VA: Author.

National Council of Teachers of Mathematics. (1995). Assessment standards for school mathemat-
ics. Reston, VA: Author.

O’Day, J., & Smith, M. (1993). Systemic reform and educational opportunity. In S. Fuhrman (Ed.),
Designing coherent policy (pp. 250–312). San Francisco: Jossey-Bass.

Palmiter, J. R. (1991). Effects of computer algebra systems on concept and skill acquisition in cal-
culus. Journal for Research in Mathematics Education, 22, 151–156.

Parke, C. S., & Smith, M. (1998, April). Examining student learning outcomes in the QUASAR pro-
ject and comparing features at two sites that may account for their differential outcomes. Paper
presented at the annual meeting of the American Educational Research Association, San Diego,
CA.

Resnick, L. B., & Omanson, S. F. (1987). Learning to understand arithmetic. In R. Glaser (Ed.),
Advances in instructional psychology (Vol. 3, pp. 41–95). Hillsdale, NJ: Erlbaum.

Schifter, D., & Fosnot, C. T. (1993). Reconstructing mathematics education: Stories of teachers
meeting the challenge of reform. New York: Teachers College Press.

Schmidt, W. H., McKnight, C. C., & Raizen, S. A. (1996). A splintered vision: An investigation of
U.S. science and mathematics education. Boston: Kluwer.

Schoenfeld, A. H. (1994). What do we know about mathematics curricula? Journal of Mathematical
Behavior, 13, 55–80.

Sharma, A. (1998, April 26). Math not working for some. Riverside Press-Enterprise.
Silver, E. A. (1998). Improving mathematics in middle school: Lessons from TIMSS and related

research. Washington, DC: Department of Education.
Stake, R., & Easley, J. (Eds.). (1978). Case studies in science education. Urbana, IL: University of

Illinois.
Stein, M. K., Silver, E. A., & Smith, M. S. (in press). Mathematics reform and teacher development:

A community of practice perspective. In J. Greeno & S. Goldman (Eds.), Thinking practices: A
symposium on mathematics and science learning. Mahwah, NJ: Erlbaum. 

18 Research and Standards



Stigler, J. W. (1998). Video surveys: New data for the improvement of classroom instruction. In S.
G. Paris & H. M. Wellman (Eds.), Global prospects for education: Development, culture, and
schooling (pp. 129–168). Washington, DC: American Psychological Association.

Stigler, J. W., & Hiebert, J. (1997). Understanding and improving classroom mathematics instruc-
tion: An overview of the TIMSS video study. Phi Delta Kappan, 79(1), 14–21.

Stodolsky, S. S. (1988). The subject matters: Classroom activity in math and social studies. Chicago:
University of Chicago Press.

Swafford, J. O., Jones, G. A., & Thornton, C. A. (1997). Increased knowledge in geometry and
instructional practice. Journal for Research in Mathematics Education, 28, 467–483.

Thorndike, E. L. (1922). The psychology of arithmetic. New York: Macmillan.
Thorndike, E. L., & Woodworth, R. S. (1901). The influence of improvement in one mental function

upon the efficiency of other functions. Psychological Review, 8, 247–261, 384–395, 553–564.
Villaseñor, A., Jr., & Kepner, H. S., Jr. (1993). Arithmetic from a problem-solving perspective: An

urban implementation. Journal for Research in Mathematics Education, 24, 62–69.
Wearne, D., & Hiebert, J. (1988). A cognitive approach to meaningful mathematics instruction:

Testing a local theory using decimal numbers. Journal for Research in Mathematics Education,
19, 371–384.

Wearne, D., & Hiebert, J. (1989). Cognitive changes during conceptually based instruction on deci-
mal fractions. Journal of Educational Psychology, 81, 507–513.

Wearne, D., & Kouba, V. L. (in press). Rational numbers. In E. A. Silver & P. A. Kenney (Eds.),
Results from the seventh mathematics assessment of the National Assessment of Educational
Progress. Reston, VA: National Council of Teachers of Mathematics.

Weiss, I. (1978). Report of the 1977 national survey of science, mathematics, and social studies edu-
cation. Research Triangle Park, NC: Research Triangle Institute.

Weiss, I. (1994). A profile of science and mathematics education in the United States: 1993. Chapel
Hill, NC: Horizon Research, Inc.

Welch, W. (1978). Science education in Urbanville: A case study. In R. Stake and J. Easley (Eds.),
Case studies in science education (pp. 5–1 — 5–33). Urbana, IL: University of Illinois.

Wood, T., & Sellers, P. (1996). Assessment of a problem-centered mathematics program: Third
grade. Journal for Research in Mathematics Education, 27, 337–353.

Yerushalmy, M., Chazan, D., & Gordon, M. (1987). Guided inquiry and technology: A year long
study of children and teachers using the Geometric Supposer (Technical Report No. 88–6).
Cambridge, MA: Educational Technology Center. (ERIC Document Reproduction Service No.
ED 294 711)

Author

James Hiebert, H. Rodney Sharp Professor of Education, University of Delaware, School of
Education, Newark, DE 19716; hiebert@udel.edu

19James Hiebert




